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1 Introduction

Recently we introduced the low energy e�ective Lagrangian in 1 + 3 dimensions for the

Standard Model in a D dimensional Yang-Mills gauge theory [1]. Gauge �elds, fermions,

and Higgs scalars propagate in the bulk which is latticized [2, 3]. The extra dimensions,

when described by the transverse lattice technique [4] become a prescription for writing

down an extension of the Standard Model in 1 + 3 dimensions. As KK modes are dis-

covered, they carry a hidden copy of the gauge group they represent through the hidden

local symmetry of vector mesons [5]. Thus, the enlargement of the gauge group into the

bulk is realized as one climbs the KK tower.

This approach emphasizes the importance of a gauge invariant description of an in-

frared truncation of the theory. There is signi�cant utility in mapping the D-dimensional

theory into an equivalent 1 + 3 theory as a model building tool. Our approach leads to

a chain of Standard Model gauge groups (this element of the scheme has a heritage, see

e.g., [6]) and \linking-Higgs �elds" which, in the broken phase, are the Wilson links in

the extra dimensions, allowing hopping from one lattice brane to another [1, 2]. These

linking-Higgs �elds can be viewed as a valid UV description of the extra-dimensional

theory up to the quartic Landau poles of our Higgs potential, where something like a

superstring phase transition probably occurs [7].

We will henceforth refer to our approach of describing the D theory with the 1 + 3

dynamics as a remodeled extra dimensional theory. The remodeling, or latticization of

compact extra dimensions to produce an e�ective 1+3 Lagrangian with new dynamics, is

in a sense the analogue of descending in supersymmetry from a full superspace action to

an action in pure space-time. Just as supersymmetry acts as an organizing principle and

dictates constraints on the spacetime theory, so too an extra dimensional theory remodeled

into 1 + 3 dictates a certain structure and dynamics. Moreover, we can map the physical

questions we wish to address, e.g., dynamics, topology, electroweak symmetry breaking,

etc., into conventional methods familiar to 1+3 model builders. Everything is manifestly

gauge invariant and renormalizable. This can ultimately be viewed as a generator for

a new class of models within 1 + 3 dimensions, with novel hidden internal symmetries

dictated by the imbedding constraints into extra dimensions. Casting a given theory

with new dynamics into remodeled extra dimensions can yield insights and avenues for

extension of the new dynamics.

Our present task is to explore dynamical fermion bilinear condensate formation for the
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breaking of electroweak symmetry in the context of remodeled extra dimensions. A strik-

ing aspect of the Standard Model in the latticized bulk construction is that it provides

the essential ingredients of a Topcolor model [8]. Indeed, Topcolor is a dynamical gauge

theory basis for top quark condensation [9] and involves rather uniquely the imbedding of

SU(3) ! SU(3)1 � SU(3)2:::. Here the third generation feels the stronger SU(3)2 inter-

action, while the �rst and second generations feel the weaker SU(3)1. Such an imbedding,

or enlargement of the SU(3) gauge group is a natural consequence of extra dimensions

with localized fermions [1], [2]. Indeed, Topcolor viewed as a remodeled extra dimensional

theory anticipates the fermionic generations arising in a localized way in extra dimensions

[10, 6].

Extra dimensional models with gauge �elds in the bulk, or their remodeled coun-

terparts, are inherently strongly coupled. We show that the inherent strong coupling

expected in these models can naturally provide a dynamical condensation of htti. In the

remodeled description this is on a �rm footing since the dynamics can be approximated

reliably by a Nambu-Jona-Lasinio model. We should say that a priori nothing precludes

the addition of more physics, e.g., supersymmetry or technicolor, etc. We pursue Topcolor

and Top Seesaw models at present because the remodeling of the 1 + 4 Standard Model

supplies all the ingredients for free!

If we wanted to construct a pure Topcolor model, or a model such as Topcolor Assisted

Technicolor, [8, 11] we also require a \tilting" mechanism to block the formation of aD
bb
E
. Again, the Standard Model in the latticized bulk provides the desired extra weak

hypercharge imbedding U(1)Y ! U(1)Y 1�U(1)Y 2::: needed to tilt in the direction of the

top condensate. The fact that the top{anti-top channel is the most attractive channel in

a Standard Model con�guration then drives the formation of the top condensate alone.

In the present paper, however, we will explore a further aspect of the dynamics of

a remodeled 1 + 4 theory with the Standard Model gauge structure propagating in the

bulk. We will show that the Top Seesaw model [12], which may indeed be the best and

most natural model of dynamical electroweak symmetry breaking, arises completely and

naturally from extra dimensions. In a Top Seeaw model a top condensate forms with the

natural electroweak mass gap, � � 600 GeV, but there exist additional vectorlike partners

to the tR quark, usually designated by �R and �L. These objects form heavier Dirac mass

combinations as M�� and m0�LtR, and taken together the physical top mass is given by

mtop = m0�=M . The Top Seesaw a�ords a way to make a heavy top quark, and explain

all of the electroweak breaking with a minimum amount of �ne tuning. It has a heavy
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Higgs boson � 1 TeV, yet is in full consistency with the S � T error ellipse constraints

[13, 14].

Remarkably, the vectorlike � quarks are also available for free from extra dimensions.

These are simply the \roaming" tR quark in the bulk, away from the domain wall that

localizes it's chiral zero mode tR. The possibility of generating top condensation (or other)

schemes in the context of extra dimensions has been developed previously in explicit

continuum extra dimensions [15]; indeed, Dobrescu [16] �rst observed that dynamical

electroweak symmetry breaking was a likely consequence of the strong coupling of QCD

in extra dimensions. Now, however, we can remodel the extra dimensional scheme into

a 1 + 3 theory which explicitly exhibits the Topcolor and Seesaw dynamics and makes

both the new strong dynamics and extra dimensions somewhat compelling! Moreover, the

geometric reasoning leads us to a systematic way of constructing the models. Remodeled

extra dimensions has led us in the present paper to a theory of avor physics, CKM

structure and light fermion masses.

Our present discussion will be largely schematic. We will describe the structure of the

theory, and in a later work we will present the full phenomenology [17].1 To make the

present discussion as transparent as possible we will \thin the degrees of freedom." Nor-

mally, we would approximate the bulk with a very large number of branes and interlinking

Higgs �elds. Presently, however, we will describe reduced n-brane models, in which n is

small, typically n = 2; 3; 4; 5:::. In our minimal Top Seesaw scheme we have n = 4, i.e.,

there is one brane per generation and one extra spectator brane (required for technical

reasons). Hence in this case all of the bulk is approximated by a transverse lattice with

four branes. Hence the gauge group we consider in 1 + 3 dimensions for the n-brane

model is SU(3)n � SU(2)nL � U(1)nY and we have n� 1 link-Higgs �elds per gauge group.

Thus, we keep only the zero-modes and n � 1 Kaluza-Klein (KK) modes for each gauge

�eld. We will also keep some of the vectorlike KK modes of the fermions, in particular

for the third generation. The masses of the vectorlike KK fermions are controlled by the

mechanism that produces the chiral fermions on the branes [19, 20] and these can be lifted

to arbitrarily large Dirac masses, independently of the compacti�cation scale.

The thinning of degrees of freedom must be viewed as a mathematical approximation

to the full theory. It is presumably derived from the �ne-grained theory by a Kadano�-

1One could readily construct a viable 4th generation scheme along these lines. All fermions are
condensed by the SU(3)�U(1)Y structure on the 4th generation-brane, and one can postulate a dynamical
Majorana mass condensate for �R as well, allowing the Gell-Mann{Ramond{Slansky{Yanagida neutrino
seesaw (see, e.g., [18] and references therein).
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style renormalization group. Thus, we expect many renormalization e�ects, and e.g.,

any translational invariance that may be softly broken by background �elds of the short-

distance theory can be lost in the thinned degrees of freedom of the e�ective theory.

Our residual engineering freedom, leading to any given scheme, arises largely from the

localization of the chiral fermions and the freedom to renormalize the linking-Higgs VEV's

and gauge couplings in a non-translationally invariant way. How all of this ultimately

interfaces with avor physics constraints, e.g., avor changing neutral current constraints

[21], etc., remain to be examined in detail [17].

Thus our models can be viewed as transverse lattice descriptions of a Standard Model

in 1 + 4 dimensions in which the gauge �elds and fermions and Higgs all live in the

bulk [15, 3, 10] with thinned degrees of freedom. Alternatively, they are a new class of

1 + 3 models with Topcolor [8, 9] and Top Seesaw [12] dynamics. The two pictures are

equivalent through remodeling.2

2 E�ective Lagrangians in Warped Latticized Back-

grounds

We begin with some essential preliminaries on latticized extra dimensions. We wish to de-

scribe the low energy e�ective Lagrangian of, e.g., the Standard Model in 1+4 dimensions

using the transverse lattice, but we include presently e�ects that break translational in-

variance in x5. We begin with the QCD content. We allow a general background geometry

described by a metric with dependence upon the extra dimension x5.

Consider the pure gauge Lagrangian in 1 + 3 dimensions for N + 1 copies of QCD:

LQCD = �
NX
j=0

1

4~g2j
Ga
j��G

a��
j +

NX
j=1

D��
y
jD

��j (2.1)

in which we have N + 1 gauge groups SU(3)j with gauge couplings ~gj that depend upon

j and N link-Higgs �elds, �j forming (3j; 3j�1) representations. The covariant derivative

is de�ned as D� = @� + i
PN
j=0A

a
j�T

a
j . T aj are the generators of the ith SU(3)i gauge

symmetry, where a is the color index. Thus, [Ti; Tj] = 0 for i 6= j; T aj annihilates a �eld

that is singlet under the SU(3)j; when the covariant derivative acts upon �j we have a

commutator of the gauge part with �j, T
ay
j acting on the left and T aj�1 acting on the right;

the jth �eld strength is determined as usual, Ga
j�� / trT aj [D�; D�], etc.

2For an alternative approach see ref.[23] following on ref.[22]
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We treat the �j as explicit Higgs �elds. Renormalizable potentials can be constructed

for each of the link-Higgs �elds, and we can always arrange the parameters in the poten-

tial such that the diagonal components of each �j develop a common vacuum expecta-

tion value (VEV) vj, and such that the Higgs and U(1) pseudo-Nambu-Goldstone boson

(PNGB) are arbitrarily heavy (for the perturbative unitarity constraint on this limit see

ref. [1]). Hence, we can arrange that each �j becomes e�ectively a nonlinear-� model

�eld [1, 2]:

�j ! vj exp(i�
a
jT

a
j =v) (2.2)

where the index j now replaces the 5th dimensional coordinate. In our previous discussion

[1, 2], we assumed that ~gj and vj were common for all N + 1 gauge groups and N links,

i.e., independent of j. This corresponds to a translationally invariant extra dimension

with physical parameters independent of x5(� y).

In general, we must consider non-uniform ~gj and vj in the remodeled theory. These

correspond to a large variety of possible e�ects. For example, we may have an extra

dimension with non-trivial background metric and a space dependent gauge coupling.

These e�ects can arise from a bulk cosmological constant, background space dependent

dilaton �eld, or from other �elds and the �nite renormalization e�ects due to localization

of these �elds. Alternatively, a background scalar �eld with nontrivial dependence upon

x5, '(x5), and coupled to the gauge kinetic term, (Ga
��)

2, will give �nite x5 dependent

renormalization of ~g.

Let us consider presently the interesting case of a warped geometry, where the metric

will contain an overall warp-factor or background dilaton �eld. We thus have in mind

something like a Randall-Sundrum model [24]. The e�ect of the dilaton �eld can be seen

through the implicit identi�cation of the link-Higgs �elds �n with the Wilson lines:

�j(x
�) = exp

 
i
Z ja

(j�1)a
dyAa5(x

�; y)T a
!
; (2.3)

where a is the lattice spacing. One �nds:

D��
y
jD

��j ! 1

2
a2v2jG

a
(j� 1

2
)�5G

a�5

(j� 1

2
)
: (2.4)

Let us compare this with the 1+4 dimensional action for the gauge �eld in the background

metric:

ds2 = e�2�(y)���dx
�dx� � dy2; (2.5)
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We have for the gauge action:

LG =
Z
d5x

p
ggMNgPQ

�1
4g25(y)

Ga
MPG

a
NQ

=
Z
d4x

Z
dy

�1
4g25(y)

�
���Ga

��G
a�� � 2e�2�(y)Ga

�5G
a�5
�
; (2.6)

where the indices �; � are raised and lowered by the Minkowskian metric ��� . We thus

can see by comparison that the gauge coupling ~gj is related to the 5-dimensional gauge

coupling by ~g2j = g25(ja)=a, (assuming that g5 is smoothly varying,) and vj is simply

related to the warp factor by:

~gj� 1

2

vja = e��((j�
1

2
)a); (2.7)

where

~gj� 1

2

� g5((j � 1
2
)a)p

a
: (2.8)

For smoothly varying ~gj and vj, we can make the following interpolation:

~g2
j� 1

2

= ~gj�1 ~gj; ~g2j vj vj+1 a
2 = e�2�(ja) � e�2�j : (2.9)

An example with 3 lattice points is described in Appendix A.

It is also straightforward to obtain the transverse lattice Lagrangian for scalar and

fermion �elds under the warped background metric. The action for a scalar �eld under

the background (2.5) is given by [25]:

Z
d5x

p
g
�
gMN@MH

y@NH �m2
HH

yH
�

=
Z
d4x

Z
dy
�
e�2�(y)@�H

y@�H � e�4�(y)@5H
y@5H � e�4�(y)m2

HH
yH
�
: (2.10)

After discretization, we have

Z
d4x

NX
j=0

0
@e�2�j@�Hy

j@
�Hj � e

�4�
j� 1

2

1

a2

�����Hj � �j
vj
Hj�1

�����
2

� e�4�jm2
HH

y
jHj

1
A : (2.11)

We can rescale e��jH ! H, the Lagrangian is then given by:

LS =
NX
j=0

(
@�H

y
j@

�Hj �
�
m2
H e

�2�j + ~g2
j� 1

2

v2j e
2(�j��j� 1

2

)
�
jHjj2 (2.12)

� ~g2
j� 1

2

v2j e
�2(�

j� 1
2

��j�1)

������jvj Hj�1

�����
2

+
�
~g2
j� 1

2

v2j e
(�j+�j�1�2�j� 1

2

)
Hy
j

�j
vj
Hj�1 + h:c:

�)
:
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As discussed in the previous paper [1], the aliphatic model corresponds to the S1=Z2

orbifold compacti�cation of the extra dimension. The even �eld under Z2 corresponds

to the boundary condition H�1 = H0, and the odd �eld under Z2 corresponds to the

boundary conditions H�1 = HN = 0. The mass parameter m2
H should be replaced by

m2
Hj if it depends on y, which can come from a y-dependent VEV of some �eld or the

renormalization e�ects.

The action of a fermion under the background (2.5) is given by [26, 27, 28]:Z
d4x

Z
dy e�

3

2
�	

�
i�@� � 5e

��@5 � 1

2
5(@5e

��)
�
e�

3

2
�	� e�4�m			: (2.13)

After rescaling and discretization, the fermion Lagrangian is given by

LF =
NX
j=0

(
	ji

�@�	j +

"
e
��

j+1
2

a
	jR

0
@�y

j+1

vj+1
	(j+1)L � 	jL

1
A+ h:c:

#

� 1

2a

�
e
��

j+1
2 � e

��
j� 1

2

�
(	jL	jR � 	jR	jL)� e��jm	j(	jL	jR +	jR	jL)

)

=
NX
j=0

(
	ji

�@�	j +
�
~gj� 1

2

vj 	jL

�j
vj

	(j�1)R + h:c:
�

�
�
1

2

�
~gj� 1

2

vj + ~gj+ 1

2

vj+1
�
+ e��jm	j

�
	j	j

)
; (2.14)

where we have used the relation (2.7) and imposed the boundary conditions 	�1R =

	NR = 0 and 	(N+1)L = 	NL, which correspond to having 	R (	L) odd (even) under

Z2. There is one more 	L than 	R at lattice N , so there is a massless left-handed chiral

fermion left. The gauge anomaly must be canceled by including additional chiral fermions.

Reversing the Z2 parity of 	L and 	R gives rise a massless right-handed fermion. This

can be obtained by imposing the boundary conditions 	�1R = 	0R, 	0L = 	(N+1)L = 0.

Alternatively, we can make the changes L $ R; ~g ! �~g; (a ! �a) in the Lagrangian

(2.14), (corresponding to an opposite sign for the Wilson term which is included to avoid

the fermion doubling problem,) and impose the boundary conditions 	�1L = 	NL =

0; 	(N+1)R = 	NR.

3 Top Quark Seesaw from Remodeled Extra Dimen-

sions

We consider a sequence of n-brane schemes. We put one generation of fermions and a

copy of SU(2)L � U(1)Y � SU(3) on each brane. We thus have n � 1 link-Higgs-�elds
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(chiral �elds, one for each gauge group). In the end we will have a set of links from a

spectator brane to the up brane (by \up" brane we mean the brane on which the chiral

up quark is localized), one set from up to charm, another from charm to top. These links

give the Aa5 kinetic terms. We will thus have constructed an \aliphatic model," as in [1, 2],

which comes from an orbifold compacti�cation, or compacti�cation between two walls on

which F a
�5 = 0. We will thus have the usual zero-mode gauge �elds and we have the n� 1

KK modes, determined exactly. No Nambu-Goldstone boson (NGB) zero modes occur as

is usually the case in Technicolor-like models; (indeed these models have nothing to do

with Technicolor).

We are assuming throughout that we have an underlying Jackiw-Rebbi mechansim [19]

to trap the fermionic chiral modes at the speci�c locations in the bulk. This involves a

�elds in 1 + 4, '(x5)q, which couple to  q q and have domain wall con�gurations on

which chiral zero-mode solutions exists. Away from the domain wall the fermions are

vectorlike and have large Dirac masses. For the remodeled description of matter �elds,

we exploit the fact that the chiral fermions can always be engineered on any given brane,

with arbitrarily massive vectorlike KK modes partners on all branes, so we need keep only

the chiral zero-modes and the lower mass vectorlike fermions. Indeed, it is an advantage

of the remodeled 1 + 3 formalism that we can do this; in a sense the chiral generations

are put in by hand in the remodeled theory, and we retain only the minimal relevant

information that de�nes the low energy e�ective Lagrangian.

We require a mechanism to make the bare g3 coupling of SU(3)C;j critically strong on

the top brane j. This will condense the top quark. Of course, with N branes (of equal

couplings) the bare g3 coupling is already
p
N times stronger than the QCD physical

coupling. We believe the freedom exists to choose an arbitraily strong bare g3 on brane j

for a variety of reasons as described in Section 2. For example, if the kink �eld that really

makes the chiral fermions (which we ignore; we put them in by hand) couples to (Gtop
�� )

2,

it can give �nite renormalizations to the top brane gauge coupling constants and trigger

the formation of the condensate (see below). Any non-universal translational invariance

breaking in x5 may provide such a mechanism.

The vectorlike fermions of the Top Seesaw arise in a simple way: they are the roaming

tR (and/or tL) in the bulk. In a sense it is remarkable that all of the ingredients are present

for this. We also get something else, Topavor [29], with the copies of the SU(2)L gauge

groups. Here arises a novel problem �rst noted in ref. [8]. With large SU(2)L couplings the

instanton mediated baryon number violation mechanism of `t Hooft becomes potentially
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problematic.

Finally, we ask: how is CKM matrix generated? We can put generational linking terms

in by hand, and these presumeably arise from an underlying mechanism of overlapping

wave-functions for split fermions [10]. In our remodeled formulation we get no more or

less information out than is put in by localizing the fermions in the bulk in the �rst place.

3.1 The Schematic Top Seesaw

Now we turn to the dynamical electroweak symmetry breaking in the latticized extra

dimension. Standard model gauge �elds and fermions propagating in extra dimensions

have been used to provide natural mechanisms for composite Higgs �elds and electroweak

symmetry breaking [15]. As we will see the latticized extra dimension can give a �rm

matching between extra dimensional models and the Top Quark seesaw models. One can

in fact view this as a geometrical interpretation of the Top Seesaw model for electroweak

symmetry breaking.

One can readily recognize the similarity between the Topcolor model [8] and the lat-

ticized extra dimension. If the SU(3) gauge coupling ~g3 is supercritical on the brane

where the top quark resides, the top condensation will form and break the electroweak

symmetry. To obtain the correct electroweak symmetry breaking scale and the top quark

mass, however, additional vector-like quarks are needed to produce a seesaw mechanism

for the top quark mass [12]. Such vector-like quarks are also automatically present on the

lattice. It is straightforward to embed the top quark seesaw theory into the discretized

extra dimensions. Let us �rst briey review the Top Seesaw model.

In a schematic form of the Top Seesaw model, QCD is embedded into the gauge groups

SU(3)1 � SU(3)2, with gauge couplings ~g3;1 and ~g3;2 respectively. The relevant fermions

transform under these gauge groups are (anomalies are dealt with by extension to include

the b-quark) [12]:

 L : (1; 3); �R : (1; 3); tR; �L : (3; 1); (3.15)

where  L = (tL; bL) is the third generation left-handed SU(2)W doublet, �L; �R; tR are

SU(2)W singlet. We include a scalar �eld, �, transforming as (3; 3), and it develops a

diagonal VEV, h�iji = v�ij, which breaks the Topcolor to QCD,

SU(3)1 � SU(3)2 ! SU(3)QCD: (3.16)

9



The massive gauge bosons (colorons) have mass

M2 = (~g23;1 + ~g23;2) v
2: (3.17)

Since �L, tR have the same gauge quantum numbers, we can write down an explicit Dirac

mass term:

��t �LtR + h:c:: (3.18)

A second Dirac mass term between �L and �R can be induced from the Yukawa coupling

to �,

� �R��L + h:c: ! ��� �R�L + h:c:: (3.19)

These masses are assume to be in the TeV range and have the order ��t < ��� < M .

Below the scale M , various 4-fermion interactions are generated after integrating out the

heavy gauge bosons. We assume that ~g3;2 is supercritical and� ~g3;1. A  L�R condensate

will form and break the electroweak symmetry. To obtain the correct electroweak breaking

scale, tL�R should have a dynamical mass mt� � 600 GeV [9]. The mass matrix for the

tL;R; �L;R is then [12]:

(tL; �L)

0
B@ 0 mt�

��t ���

1
CA
0
B@ tR

�R

1
CA (3.20)

The light eigenstate is identi�ed as the top quark and have a mass

mt � mt�

��t
���

(3.21)

The top quark mass is correctly produced for ���=��t � 3:5. The model thus produces

an acceptable dynamical electroweak symmetry breaking and a composite Higgs boson

(composed of � tL�R) with a fairly natural scale of the new physics (the QCD imbedding

scale) of � � few TeV.

3.2 Top Seesaw from Remodeled Extra Dimensions

We see that all of the ingredients of a Topcolor scenario, in particular the Top Qaurk

seesaw, are present in an extra-dimensional scheme. We assume that we have only the

fermions  and t in 1 + 4 dimensions. The � feilds will appear automatically as the

vectorlike KK mode components of these �elds. The fermions are coupled in 1 + 4 to a

background �eld as '(x5)  and '(x5)tt and we assume that '(x5) produces a domain

wall kink at x50 which we identify in our latticized approximation as the brane 1 in the
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t

L

R

L L L L

R R R

R R R R

L L L L

R

0 1 2 3 4

T

Figure 1: A left-handed doublet zero mode  L and right-handed singlet tR are localized on
brane 1, by a kink in a background �eld '(x5) which gives a Dirac mass to the fermions
away from brane 1. The linking Higgs �elds, �  Lj

Q
�j R;j+1 connect the fermionic

modes, coming from the kinetic terms, and are represented by the diagonal links between
nearest neighbor branes. We keep only the lowest lying vectorlike modes in the picture.
The Dirac mass term on a single brane, arising from the kinetic terms and '(x5) connects
the vectorlike chiral partners �M Lj Rj and is represented by the (curved) links on each
brane.

Figures. Before the formation of the top condensate the top quark con�guration on the

lattice branes is depicted in Fig.[1].

The basic idea underlying the formation of a condensate is to allow a particular gauge

coupling constant to become supercritical on a particular brane. In Fig. 2 we show the

formation of the condensate
D
 LtR

E
on brane 1 where we assume that the SU(3)1 coupling

constant, g3;1 is supercritical, i.e., in the NJL model approximation to QCD 3g23;1=8�
2 > 1.

A trigger mechanism in the 1 + 4 theory to arrange the supercritical coupling at the

location of the trapping domain wall is to postulate a coupling of ' to the squared �eld

strength (Ga
��)

2 such that the gauge Lagrangian in 1 + 4 becomes:

"
� 1

4g23
� �'2

4M2

#
(Ga

��)
2 (3.22)

Such a coupling will always be induced by the fermion �elds which couple to the gauge

�elds. We assume ' ! M (' ! �M) for x5 ! R (x5 ! 0). For � > 0 the action is

well-behaved, and o� the domain wall the e�ective coupling constant, g23 = g23=(1 + �)

is suppressed. On the domain wall the e�ective coupling is then g23 which we assume is

supercritical. Moreover, the condensate is generally suppressed, for �xed coupling g23 in

NJL model approximation for �elds with large Dirac masses, so we expect only the chiral

�elds to pair up. In fact, one need not appeal to the trigger mechanism alluded to above,
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Figure 2: A condensate
D
 LtR

E
forms on brane 1 when the SU(3)1 coupling constant g3;1

is supercritical. This can be triggered from '(x5)(G2
��) in the 1 + 4 underlying theory,

but is a free parameter choice in the 1 + 3 e�ective Lagrangian.
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Figure 3: Two brane approximation; In the limit that  2 decouples, this is just the original
Top Seesaw Model of [15].

but it is a useful way to suppress g23 elsewhere in the bulk, and such operators are expected

on general grounds when we construct the renormalized e�ective Lagrangian with fewer

degrees of freedom.

In our latticized 1 + 3 decription the varying coupling constants ~g3;j and Dirac mass

terms can be put in \by hand" as de�ning parameters. The discrete version of a chiral

trapped zero-mode is described in Appendix B.

To derive the Top Seesaw Model from extra dimensions, we thin the degrees of freedom

of the extra dimension to 2-branes. There is an SU(3)j on each brane. The scalar �eld

� which breaks SU(3)1 � SU(3)2 down to SU(3)QCD is now just the link-Higgs �eld and

has exactly the right structure for Topcolor breaking. The SU(2)L doublet and singlet

12



quark propagate in the 1 + 4 bulk, and in the latticized scheme are represented by the

�elds  j; tj; j = 1; 2 on the two branes:

SU(3)1 SU(3)2

 1L  2R  2L

t1R t2L t2R

(3.23)

We have projected out the chiral partners  1R and t1L by coupling to the background

localizing �eld with a domain wall kink at brane 1, which produces chiral fermions. The

kinetic terms in the extra dimension give rise the mass terms in the 1 + 3 e�ective La-

grangian that interconnect  1L to  2R etc. The backgound localizing �elds ' also produces

the Dirac masses that interlink, e.g.  2R and  2L, etc. So, in the two brane approximation

we have:

m 22 2L 2R +m 12 1L

�y

v
 2R +mt22t2Lt2R +mt12t1R

�y

v
t2L + h:c:; (3.24)

with

m 12 = �mt12 � �
q
~g3;1~g3;2 v m 22 � h '; mt22 � ht' h >> ht (3.25)

This con�guration are shown in Fig. 3.

We can see explicitly that this matches onto the schematic Top Seesaw model. To

match we �rst assume that the ' contribution to the  2L 2R mass term is so large that

 2L;  2R decouple. Then, the 2-brane model is identical to the schematic Top Seesaw

model described above through the following identi�cation:

 L =  1L; �R = t1R; �L = t2L; tR = t2R;

��t = mt22 ; ��� = mt12 : (3.26)

For a supercritical gauge coupling ~g3;1, the h 1Lt1Ri condensate will form, breaking the

electroweak symmetry. The top quark mass is then obtained from the seesaw mechanism.

3.3 The Light Generations and Flavor Physics

We now consider all three fermionic generations of the Standard Model in the latticized

bulk. We discuss the issue of how we can generate light quark masses and mixings in a

generalized geometric Top Seesaw scenario.

13



Clearly, in order to generate light fermion masses from the third generation conden-

sates, some avor mixing terms must be present. Small masses and mixings can be

generated in 1 + 4 models by the overlap of the Higgs and fermion wavefunctions in the

extra dimension [10] and/or small avor mixing e�ects arising from localization. We ex-

amine this mechanism in the latticized extra dimension with the simplest avor mixing

mass terms. We �nd that the light generation fermion masses are generated radiatively

in this picture.

There is a copy of the SU(3) � SU(2)L � U(1)Y Standard Model gauge group on

each brane, with gauge couplings ~ga;j respectively, where a = 1; 2; 3; is the gauge group

index and j = 0; 1; 2 is the brane index. There are link �elds �a;j; a = 1; 2; 3; j = 1; 2

which break the full SU(3)3�SU(2)3L�U(1)3Y gauge group down to the Standard Model

SU(3)� SU(2)L � U(1)Y .

We will denote the 3 generation SU(2)L doublet quarks with uppercase letters (T; C; U)

and SU(2)L singlet fermions with lowercase letters (t; c; u) respectively. We assume that

the third generation fermions propagates on all branes, with the localization removing the

right-handed SU(2)L doublets and the left-handed singlets on brane 0. Hence the third

generation �elds Tj and tj, etc., carry the brane index j, while the C; c (U; u) are localized

on brane 1 (2). The localization of the top, charm and up quarks is accomplished with

additional '(x5)t, '(x
5)c and '(x

5)u �elds that produce domain walls in the underlying

1 + 4 theory.

If we assume that only the ~g3;0 SU(3) coupling constant is supercritical, then this then

drives the formation of the condensate
D
TL0tR0

E
, breaking the electroweak symmetry. The

top quark mass is then obtained from the generalized seesaw mechanism. In general the

left{ and the right{handed top quark zero modes are linear combinations of TLj and tRj

(and CL; UL; cR; uR after including avor mixings).

T (0)
L =

3X
j=0

�TjTLj (+�CCL + �UUL); t(0)R =
3X
j=0

�tj tRj (+�ccR + �uuR); (3.27)

where �Tj ; �tj are coe�cients determined by the direct and link mass terms among TL;R's

and tL;R's. The top quark mass is suppressed by the mixing angles �T3 and �t3 ,

mt � �T3�t3 � 600 GeV: (3.28)

Let us �rst thin the degrees of freedom of the extra dimension to a 3-brane model,

and we consider �rst the generation of the charm quark mass. This con�guration is as

shown in Fig. 4.
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Figure 4: Three brane approximation incorporating charm, where C = (c; s)L is a doublet
zero-mode, and c = cR is a singlet zero mode, both trapped on brane 1 (we assume the
vectorlike partners of C and c are decoupled). The Dirac avor mixing between CL R1
and cRtL1 can be rotated away by rede�nitions of  R1 and tL1.

To generate the charm quark mass, we include avor-mixing mass terms. In the

underlying 1 + 4 theory we might suppose that these can arise on a given brane from

couplings of the form, e.g., �'(x5)tCL R. In the 1 + 3 theory this is a common Dirac

mass on brane 1 that mixes all fermions with equivalent quantum numbers. However,

the direct contact mass terms CLTR1; tL1cR; can all be rotated away by rede�nitions of

the �elds TR1 and tL1. This can be seen by considering the overall mass term on brane

1 m0tL1cR +MtL1tR1 where the second term is just the mass of the Dirac (non-chiral)

vectorlike t quark on brane 1. Thus, by rede�ning tR1 ! (�m0tR1 +McR)=
p
M2 +m02

and cR ! (MtR1 + m0cR)=
p
M2 +m02 we eliminate the direct charm quark mass term.

The important point is that this rede�nition involves only �elds on the common brane

1, and there is no residual kinetic term mixing since all of the kinetic terms involve the

same gauge �elds Aa�;1. In order to generate a surviving mass term for the charm quark

we thus need additional terms to frustrate the chiral rede�nition.

Note that when we rotate away the direct charm mass terms on brane 1, we in general

will obtain the linking mass terms,

CL

 Y
a

�a;2

!
TR2; tL2

 Y
a

�y
a;2

!
cR; (3.29)

where the (
Q
a �a;i) is a product of linking-Higgs. These terms can be viewed as mass

terms, but in reality they are all higher dimension operators; since we are in the broken

phase in which the �'s all have VEV's we can only approximately describe these terms
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Figure 5: The avor mixing (dashed lines) between CL

Q
(�=v) R12 and cR

Q
(�=v)tL2

cannot be rotated away by rede�nitions of  R2 and tL2 without generating e�ective kinetic
term mixing which leads to non-zero-mode avor changing gluon vertices (in the broken
phase where � ! v; this mixing is actually a higher dimension operator). The charm
quark mass is thus generated when radiative corrections are included (wavy line).

as though they are mass terms. However, even with the avor mixing linking (higher

dimension) mass terms and the direct mass terms, at tree level, (neglecting the gauge

interactions on branes 0{2,) we can again perform a �eld rede�nition as before and we

still fail to generate a charm quark electroweak mass and only the top quark retains

a nonzero electroweak mass. This can be seen readily as the EWSB condensate only

couples to TL3; tR3. We can rewrite TL3; tR3 in terms of the rede�ned eigenstates of the

electroweak preserving masses,

TL3 = �3T
(0)
L + �2C

(0)
L + �1U

(0)
L + heavy states;

tR3 = 3t
(0)
R + 2c

(0)
R + 1u

(0)
R + heavy states: (3.30)

After decoupling the heavy vector-like states, the 3� 3 up-type quark mass matrix MU

MU ij / �ij; (3.31)

is of rank 1.

However, the result of the �eld rede�nition is that now o�-diagonal couplings to the

gluons on branes 1 and 2 are generated! When we now take into account the gauge inter-

actions on branes 0{2, the charm quark does indeed obtain a nonzero mass from radiative

corrections as shown in Fig. 5. For this to occur we require the linking mass terms, be-

cause otherwise the gauge radiative corrections only produce multiplicative corrections to

the (zero) mass on a given brane.
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Figure 6: The radiative correction diagram in the current eigenbasis for the induced charm
mass.

More explicitly, we now have the interbrane mass term of the form, e.g., m0tL2cR for

the charm quark. This implies that on brane 2 there is the overall mass term m0tL2cR +

MtL2tR2 where the second term the mass of the Dirac vectorlike t quark. Thus, rede�ning

tR2 ! cos �tR2 + sin �cR and cR ! � sin �tR2 + cos �cR we can eliminate the direct charm

quark mass term. However, in the kinetic terms we have:

cR(i@= � A= 1)cR + tR(i@= � A= 2)tR (3.32)

Upon performing the rede�nitions we generate o�-diagonal transitions:

cR(i@= � ~A= 1)cR + tR2(i@= � ~A= 2)tR2 + �(cR(A= 1 � A= 2)tR2 + h:c:) + ::: (3.33)

where ~A1(2) = cos �2A1(2) + sin �2A2(1) and � = sin � cos �, and the ellipsis represents

diagonal terms. On the left-handed side of Fig.[6] we also generate o�-diagonal couplings

of the form �0(CL(A= 1�A= 2)TL2+ h:c:). In evaluating the induced charm quark mass and

mixing it is useful to remain in the current eigenbasis in which the gluon interactions are

diagonal. We emphasize that this e�ect is di�erent than that described by [21] in which

localization produces o�-diagon avor transitions amongst fermions coupled to KK mode

vector bosons.

These o�-diagonal kinetic terms, we emphasize, are higher dimension operators involv-

ing the link-Higgs �elds! They take the apparent d = 4 form only as a result of working

in the broken phase of the �'s. However, the result is that we have generated now an

interaction that acts like extended technicolor. When we include the radiative e�ects of

the gluons we generate charm quark mass. In Fig. 6 we illustrate the diagram in the
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Figure 7: The radiative correction diagram in the current eigenbasis for the induced
charmL{topR mixing mass term.

basis in which the gluon couplings are diagonal (the current eigenbasis) The charm quark

mass is now radiatively generated. We also generate radiative mixing between charm and

top through diagrams as in Fig. 7 where now the mixing of the gluonic gauge groups on

di�erent branes must be included.

The extension of the scheme to include the up quark mass generation and the mixing

is shown in Fig. 8. Again, we require nearest neighbor mixing between branes which

produces vanishing mass in tree approximation, but o�-diagonal gluon vertices in the

broken phase due to kinetic term mixing. The full mass matrix is regenerated when

radiative corrections are included.

One can understand the origin of the mass matrix in the language of the \shining Higgs

VEV pro�le" as discussed in our previous paper [1]. The gauge interactions on branes 1{2

are subcritical, so the Higgs bound states formed on these branes have positive squared

masses. However, due to the links with brane 0, the composite Higgs �elds on brane 1{2

will receive tadpole terms as shown in Fig. 9, and therefore obtain nonzero VEVs.

From the shining and the avor mixing e�ects, the �nal Higgs VEV will contain some

small components of CLcR and ULuR after diagonalization, which are responsible for

generating the charm and up quark masses.

To generate the down-type quark mass matrix requires a mechanism to �rst generate

the b-quark mass. One possibility is to condense the b-quark as in the case of the top

quark, and exploit a larger seesaw. This encounters generally a large degree of �ne-tuning;

to have the large seesaw suppression of the physical b mass requires a larger vectorlike
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Figure 8: The extension to include the up quark in a 4-brane model with radiatively
generated mass and mixing.

Dirac mass for the roaming b quarks, and this can turn o� the condensate except for

large supercritical coupling. An alternative and less �nely tuned appraoch is to exploit

SU(3)0 instantons on brane 0 which produce a 't Hooft determinant containing terms like

� bLbRtLtR + ::: Then the nonzero htti induces the b-quark mass. The magnitude of this

condensate can be controlled by seesaw with the vectorlike b-quarks. In any case, the

dynamical and phenomenological details of the generation of the b quark mass is a Top

Seesaw modeling issue, and will be described in detail in a forthcoming paper by He, Hill

and Tait [14]. For our present purposes we can simply assume that an induced b-quark

mass or
D
bb
E
can be arranged for brane 0. The full model then takes the form of Fig.

8 with (u; c; t) replaced by (d; s; b). This produces a second species of Higgs boson, the

b-Higgs Hb which then shines through the bulk.

Topcolor does not speci�cally address the issue of leptons. We can in principle use the

U(1)Y 0 on the brane 0 to condense the � lepton, and a corresponding seesaw to produce the

physical m� . Alternatively, any new physics that produces the higher dimension operator

tt�� structure will su�ce to give the � lepton a mass. Having produced the h��i 6= 0

on brane 0, we again repeat the construction to provide the masses for � and e. In the

lepton case the U(1)Y radiative corrections replace the gluonic radiative corrections. The

neutrinos do not condense since U(1)Y does not produce a nontrivial `t Hooft determinant

(!), and we do not presently address the origin of the small neutrino Majorana masses.

This seems to us to be straightforward.
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Figure 9: The formation of composite Higgs �elds on each brane and their propagation to
subsequent branes. This sets up a tadpole on each brane which expoentially attenuates
away from the brane 0 of the top condensate.

Alternatively, perhaps a fourth generation scheme, which seem readily viable to us,

has advantages for the lepton mass generation mechanism. The structure of the quark

sector for a 5-brane model is shown in Fig.10. We use the strong SU(3) and strong U(1)Y

to form a
D
bb
E
� htti �

D
``
E
condensate on brane 0 of the fourth generation quarks.

This makes a heavy zero mode composite Higgs boson of mass � 1 TeV. There will be

calculable custodial SU(2) breaking due to corrections from the strong U(1)Y . This may

help to pull the T parameter to a larger value and thus maintain consistency with the

S � T error ellipse.

The quarks of the fourth generation roam through the bulk and propagate the compos-

ite Higgs. The three lighter generations feel the condensate as in the Top Seesaw scheme

of Section 3, as seen in Fig.[10] which shows explicitly the quark sector. The masses and

CKM structure are then generated radiatively in analogy to the

In Fig.[11] we illustrate how the lepton sector can be dynamically generated. Here

there is a U(1)Y 0 condensate of h��i on brane 0 which produces the leptonic Higgs boson.

As before, the fermion masses are generated by linking avor changing terms.

We included the right-handed neutrino NR. The NR is a gauge singlet so we can

write down the Majorana mass terms, N
C

j Nj. We also included the allowed (dot-dashed)

Majorana links between branes, representing, e.g. N
C

j Nj+1.

To produce small majorana mass terms for the known neutrinos we require some
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Figure 10: The fourth generation condensate generating the up and down type quark
masses.

mechanism to link the left-handed lepton doublets to NR. This requires physics outside

of the Standard Model, and probably physics arising from the fundamental scale of the

extra-dimensional theory. This physics would be expected to violate global symmetries,

while gauge symmeries are protected. For example, we can have the SU(2)L � U(1)Y

invariant operators:

1

M2
LLNRLLNR;

1

M2
LL(NL)

CLL(NL)
C (3.34)

We depict this in Fig.[11] by the double dashed curved lines connecting these states.

These terms can be present anywhere in the full lattice, so we keep the relevant terms

which link the physical zero mode lepton doublets to the NRj. Integrating out the heavy

vectorlike neutrinos Nj produces the Majorana mass terms, �  L( L)
c.

We mention that one should be wary of the possibility of enhanced proton decay com-

ing from the 't Hooft process with the strong SU(2)L gauge groups located on various

branes. This is an issue for \topavor" models which we defer to another session. More-

over, as discussed in Ref. [21], the KK gauge bosons can induce avor-changing e�ects

in the split fermion generation models. This puts a strong constraint on the KK gauge

boson masses. In our model, the �rst two generations are localized away from the EWSB

brane. Flavor-changing e�ects involving the �rst two generations from heavy gauge boson

exchanges can be suppressed if the link VEVs associated with the �rst two generation
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Figure 11: The fourth generation condensate generating the up and down type quark
masses.

branes are much larger than the weak scale (since they are not directly related to EWSB).

4 Discussion and Conclusion

In conclusion, we have given a description of a fairly complete extension of the Standard

Model with dynamical electroweak symmetry breaking. This arises from the bulk 1 + 4

dimensions as a 1+ 3 dimensional e�ective theory after remodeling. We have kept only a

small number of lattice slices (branes) as a minimal approximation with thinned degree

of freedom.

A dynamical electroweak symmetry breaking scheme emerges naturally in this de-

scription, as �rst anticipated by Dobrescu [15]. We see immediately the emergence of an

imbedding of QCD as in SU(3)! SU(3)1 � SU(3)2:::, and the appearance of vectorlike

partners of the elementary fermions such as the top quark. With fermionic localization

we can have avor dependent couplings to these gauge groups, and trigger the formation

of condensates using localization background �elds or warped geometry.

These elements are all part of the structure of Topcolor, [8], and and the Top Seesaw

[12], and we thus led naturally to this class of extra-dimensional models in which the

electroweak symmetry is broken dynamically. However, one can go beyond these schemes
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to, e.g., a fourth generation scheme which is somewaht more remniscent of Technicolor

and may have direct advantages for the lepton sector masses.

One can always discard the notion of extra-dimensions and view this as an extension

of the Standard Model within 1 + 3 dimensions with extra discrete symmetries, however

the speci�c structures we have considered are almost compelled by extra dimensions. The

connection to extra dimensions is made through remodeling [1, 2], bulk inhabitation of

gauge �elds [3], the the transverse lattice [4], hidden local symmetries [5], etc., and may

be viewed as a manifestly gauge invariant low energy e�ective theory for an extension of

the Standard Model in 1 + 4. Softening the link-Higgs �elds to dynamical Higgs �elds

leaves a renormalizable e�ective Lagrangian (modulo certain higher dimension operators

that are involved in fermion mass and mixing angle physics), but we fully expect the UV

limit to be something new, such as a superstring theory [7].

Remodeling is a remarkable model building tool, and a system of new organizational

principles. Remodeling has guided our thinking in producing the present sketch of a full

theory of avor physics based upon Top Seesaw, something which has not been previously

done. Much work remains to sort out and to check that the systematics of experimental

constraints can be accomodated [17, 14], and to see if the model survives as a natural

scheme without a great deal of �ne-tuning. It is already encouraging that the Top Seesaw

model is a strong dynamics that is consistent with experimental S � T constraints.
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Appendix A: Three Brane Example of Gauge Fields

sans Translational Invariance

We now wish to address the impact of the breaking of translational invariance in x5 on the

physics of the e�ective 1+ 3 Lagrangian. It is generally advantageous to thin the degrees

of freedom in the lattice description of the extra dimensions. We can construct a coarse

grain n-brane model with n << N as a crude approximation to a �ne grained N -brane

model. Such a description can be improved in principle by a block-spin renormalization

group, which is beyond the scope of our present discussion.

Consider, for example, a 3-brane model. The e�ective 1+3 Lagrangian now contains 3

copies of the Standard Model gauge group and link �elds interpolating each of the SU(3)C ,

SU(2)W , and U(1)Y groups in the aliphatic con�guration. The pure gauge Lagrangian in

1 + 3 dimensions for 3 copies of QCD is given by:

LQCD = �1

4

2X
j=0

Ga
i��G

a��
j +

2X
j=1

D��
y
jD

��j: (4.35)

where Ga
i�� has been rescaled so that the gauge coupling ~g3;j appears in the covariant

derivative. The electroweak gauge Lagrangian can be written down analogously.

After substituting the VEVs of the link �elds,

�j ! vj exp(i�
a
jT

a
j =v); (4.36)

the �j kinetic terms lead to a mass-squared matrix for the gauge �elds:

2X
j=1

1

2
v2i (~g3;(i�1)A

a
(i�1)� � ~g3;iA

a
i�)

2 (4.37)

This mass-squared matrix can be written as an 3 � 3 matrix sandwiched between the

column vector A = (Aa0�; A
a
1�; A

a
2�), and it's transpose, as ATMA, where:

M =
1

2

0
BBBBB@

(~g3;0)
2v21 �(~g3;0~g3;1)v21 0

�(~g3;0~g3;1)v21 (~g3;1)
2(v21 + v22) �(~g3;1~g3;2)v22

0 �(~g3;1~g3;2)v22 (~g3;2)
2v22

1
CCCCCA : (4.38)

where we have kept the full set of e�ects of j-dependence in vj and ~g3;j.

We can diagonalize the mass-matrix as:

Aj� =
2X

n=0

ajn ~A
n
�: (4.39)
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The ajn form a normalized eigenvector (~an) associated with the nth eigenvalue. The eigen-

vectors and the corresponding eigenstate masses for common ~g3 and v, which corresponds

to the at extra dimension case, were obtained in the previous papers [1, 2],

~a0 =
1p
3
(1; 1; 1)

~a1 =

s
2

3

�
cos

�

6
; cos

3�

6
; cos

5�

6

�
=

1p
2
(1; 0; �1)

~a2 =

s
2

3

�
cos

2�

6
; cos

6�

6
; cos

10�

6

�
=

1p
6
(1; �2; 1) (4.40)

(M0; M1; M2) = 2~g3v
�
0; sin

�

6
; sin

�

3

�
= ~g3v (0; 1;

p
3); (4.41)

The expressions for the eigenvectors and eigenvalues for general ~g3;i and vi are more

complicated. However, if ~g3;0v1; ~g3;1v1 � ~g3;1v2; ~g3;2v2, we have a sequential decoupling.

In this case the SU(3)0 � SU(3)1 is �rst broken down to the diagonal SU(3)0 by �1,

then SU(3)0 � SU(3)2 is broken by �2 to SU(3)QCD at a lower scale. In this case, the

eigenstates and their masses are given approximately by:

~a2 � 1q
~g23;0 + ~g23;1

(~g3;0; �~g3;1; 0);

~a1 � 1q
(~g23;0~g

2
3;1 + ~g23;1~g

2
3;2 + ~g23;0~g

2
3;2)(~g

2
3;0 + ~g23;1)

(~g3;0~g
2
3;1; ~g

2
3;0~g3;1; ~g3;2 (~g

2
3;0 + ~g23;1));

~a0 =
1q

~g23;0~g
2
3;1 + ~g23;1~g

2
3;2 + ~g23;0~g

2
3;2

(~g3;1~g3;2; ~g3;0~g3;2; ~g3;0~g3;1); (4.42)

M2
2 � (~g23;0 + ~g23;1) v

2
1; M2

1 �
~g23;0~g

2
3;1 + ~g23;1~g

2
3;2 + ~g23;0~g

2
3;2

~g23;0 + ~g23;1
v22; M2

0 = 0: (4.43)
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Appendix B: Chiral Fermions and a Discretized Ver-

sion of the Jackiw-Rebbi Domain Wall

In 1 + 4 dimensions free fermions are vectorlike. Chiral fermion zero modes can be

obtained by using domain wall kinks in a background �eld which couples to the fermion

like a mass term. This can trap a chiral zero-mode at the kink [19]. This mechanism

can be generalized to the lattice action [20]. We now discuss the chiral fermions in the

discretized version of the Jackiw-Rebbi domain wall.

We �rst consider an in�nite �fth dimension, (i.e., there are in�nite number of SU(3)'s

for QCD,) and for simplicity, we assume that ~g and v are constant. From eq.(2.14) we see

that the kinetic term in the �fth dimension appear as the following fermion mass terms,

~gv	iL	iR + h:c:; �~gv	iL	(i�1)R + h:c:: (4.44)

The mass matrix between 	L and 	R, 	LMf 	R is

Mf = ~gv

0
BBBBBBBBBBBB@

. . . 0 � � �

. . . 1 0 � � �
0 �1 1 0 � � �
... 0 �1 . . .

. . .
...

. . . . . . . . .

1
CCCCCCCCCCCCA
: (4.45)

A left-handed chiral zero mode can be localized at y = yk by a kink fermion mass term

which has m	(y < yk) > 0 and m	(y > yk) < 0. In the discrete version, we give a positive

mass to the diagoanl mass term m	iL	iR; m > 0 for i < k and a negative mass to the

o�-diagonal mass term �m	iL�i	(i�1)R=v for i > k.3 This enhances the diagonal links

for i < k and the o�-diagonal links for i > k. A left-handed chiral zero mode then arises

centered around 	kL who has the \weakest links". One can easily check that the state

 L =
X
i

�ji�kj	iL; � =
~gv

~gv +m
< 1; (4.46)

is a zero mode, while there is no normalizable right-handed zero mode. The width of

the zero mode becomes narrower for smaller �. In the limit m � ~gv, the zero mode is

e�ectively localized only on the lattice point k. Similarly, a right-handed chiral mode can

be localized by considering the opposite mass pro�le.

3One can also add the negative mass to the diagonal term, �m	iL	iR for i > k as in Ref. [20]. In
this case, localization of the zero mode requires that j~gv �mj < ~gv.
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If we compactify the extra dimension with the periodic boundary condition, there will

be another zero mode with the opposite chirality localized at the anti-kink of the mass

term. In general, the pair of zero modes will receive a small mass due to the tunneling

between the �nite distance of the kink{anti-kink separation unless some �ne-tuning is

made. With the S1=Z2 orbifold compacti�cation, however, one of the zero mode will be

projected out. One can see that in the discrete aliphatic model, the boundary conditions

removes one chiral fermion at the end of the lattice point, so there must be a chiral

fermion left massless due to the mismatch of the numbers of the left-handed and right-

handed fermions. The massless chiral fermion can be localized anywhere on the lattice

using the discrete domain wall mass term.
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